Tag Archives: FUPS

Major truck manufacturers have Front Underride Protection designs which can work on American trucks.

Europe and Australia have underride protection on the front of large trucks. Yet, here in the U.S., there is not much talk about installing front underride protection to stop the horrific devastation which occurs when the front of a truck goes over the top of a car. Why is that?

Well, for one thing, it is not mandated by law in the U.S. whereas it is in Australia and European countries. And because it is not required, the trucking industry is not particularly motivated to use it since they don’t directly benefit from it — although they might change their mind if they look at the whole picture.

And the other thing is that front underride is a vastly misunderstood problem. The general attitude seems to be that it’s not something we can do anything about. Of course, a truck is so much bigger than a smaller passenger vehicle. So if a truck hits your car, you don’t stand a chance. The only thing we can do is try to stop the collision in the first place. Is that true?

Front Underride Protection Brochure 6

As with rear and side underride, we continue to discover appalling facts about the problem of front underrride and how it, too, has been swept under the rug despite available research and technology. Supposedly, there has not been much research done to solve this problem. I’m finding that that’s not the case, after all. Let’s start with these links:

  1. Update on November 23, 2018: Found this pdf from the expert from the European Commission. . . a draft amendment to update the Frontal Underrun Protection regulation. “The amendment is proposed in particular to allow more rounded shape of the cab in light of better aerodynamic performance.”   https://www.unece.org/fileadmin/DAM/trans/doc/2018/wp29grsg/GRSG-115-25e.pdf
  2. IIHS Status Report, August 26, 1989: Front End, Energy-Absorbing Truck Guards Reduce the Risks for Motorists
  3. Australian FUP signed into law on September 16, 2009. Of note are some of the comments in a press release: a) FUP involves an impact barrier of prescribed strength and dimensions that catches or deflects a light vehicle during a collision to stop it sliding under a heavy truck. b) It can either be built in to the structure of the truck, or added on – in some cases replacing the function of a bull bar at the same time. c) By catching or deflecting the light vehicle, its occupant protection systems are then able to work effectively, mitigating injury to the light vehicle occupants. d) The international regulation (United Nations Economic Commission for Europe – UNECE – R 93) that the ADR is based on has been adopted in Europe. It will be adopted by Japan in 2012. It has not been adopted by the United States. e) In 2007, the Department of Infrastructure, Transport, Regional Development and Local Government invited public comment on a Regulatory Impact Statement (RIS) for Underrun Protection. A draft ADR was then developed that took into account local requirements.It is estimated that FUP will provide benefits of over $20 million a year (including lives saved and injuries reduced and averted), once fully implemented.  http://anthonyalbanese.com.au/new-truck-safety-rule-to-save-lives-2
  4. We should be very concerned about the fact that, in a collision, when the FRONT of a truck hits a smaller passenger vehicle — either in a head-on collision or when a truck rear-ends a car — the lack of a front underride protection system (FUPS) means that we are very vulnerable to that truck going over the top of our car. FUPS can change the outcome.
  5. Sapa Front Underride Presentation (international aluminum extrusion company has made FUP in Europe): Sapa Front Underride Presentation
  6. “Fred Andersky, director, customer solutions, controls with Bendix, said at the North American Commercial Vehicle show that every 15 minutes in the U.S., a large truck rear-ends a passenger car.”  https://www.trucknews.com/equipment/bendix-developing-next-gen-safety-systems/1003081127/

    That means there is a potential front override 96 times/day, 672 times/week, 2,912 times/month, and 34,944 times/year! So, tell me why we would not want to have Front Underride Protection (FUP) on trucks in this country!!!

  7. And there are countless head-on collisions every year. I’m not sure how many of those are even being counted as truck underride fatalities.
  8. Andreas Ratzek, a German crash test manager with ADAC, shared this information with us: United Nations Economic Commission for Europe (UNECE) Front Underride Protection Standard from 1993:   http://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/R093e.pdf
  9. EUR-Lex: Access to European Union Law
  10. a link to VC-compat, a European research project that also covers FUP
  11. Raphael Grzebieta shared with us the Australian FUP Standard: Vehicle Standard (Australian Design Rule 84/00 – Front Underrun Impact Protection) 2009
  12. Abstract, “Improvements to highway safety are in continual demand. One of the most severe instances of vehicle collision occurs as a result of vehicle weight and sizing mismatch. The fitment of Front Underride Protection Devices (FUPDs) upon tractor-trailers is studied as a method to improve crash compatibility between passenger vehicles and tractor-trailers involved in head-on highway crashes. While some countries require the use of FUPDs, no such regulation exists in North America. North America’s use of Conventional Tractors also presents a variation to Cab-over Engine Tractors popular in Europe. The distinction presents variations to FUPD design boundary conditions. A three tier design strategy is proposed and implemented in an effort to guide development of FUPDs for improved performance and robustness. Extensive testing is undertaken in establishing guidelines for further development and testing of Front Underride Protection Devices.” from a Canadian Thesis on Front Underride Presentation on Front Underride Protection: https://ir.library.dc-uoit.ca/xmlui/handle/10155/413?show=full
  13. Although Europe has a different design for their Semi-Trucks, we discovered this weekend that Australia has a combination of trucks such as are found in Europe and those manufactured in the U.S. But because they are all required to have FUPS, major truck manufacturers, such as Kenworth, Freightliner, Mack, Mercedes-Benz, etc., have all developed FUPS designs which would work on North American trucks (Canada and the U.S.).
  14. George Rechnitzer, Australian professor shared this with us: “The analysis of FUP requirements has been done decades ago in Great Britain and Europe,  and in our studies in Australia (e.g see my 1993 MUARC report “Truck Involved Crash Study: Fatal and Injury Crashes of Cars and Other Road Users with the Front and Sides of Heavy Vehicles Monash University Accident Research Centre – Report #35 – 1993, download from here: https://www.monash.edu/muarc/our-publications/muarc035. Of course such findings and recommendations could be improved nowadays including the design and use of “large airbags on the front of trucks” – this would clearly need design, crash testing etc. But this should not stop the USA from adopting existing well established FUP designs and principles from Europe, Australia and elsewhere.”
  15. Kenworth Trucks brochure, Kenworth, Safety By Design, August 2019, mentions Front Underride Protection (https://www.kenworth.com.au/wp-content/uploads/2018/08/Kenworth-Safety-Brochure-Aug-2018-Web-Version.pdf): FRONT UNDERRUN PROTECTION SYSTEM (FUPS)
    Designed to prevent a car from being trapped underneath the truck
    in the event of a frontal collision, factory fit FUPS are standard on
    all Kenworth models.
    FUPS also helps to protect against any damage to the truck’s
    steering, thus enabling the truck driver to stay in control.
  16. Notice that last sentence: FUPS also helps to protect against any damage to the truck’s steering. That means not only is the passenger vehicle occupants protected but the truck’s steering is also protected and the truck driver is more likely to be able to stay in control when there is a collision. Win/Win!
  17. I found that same good news in another document shared with us this weekend by George Rechnitzer. The Australian underride regulatory review (which unfortunately does a cost/benefit analysis unfavorable to side underride protection and improved rear protection) approved FUPS (front underride protection system): Aust Regulation Impact Statement for Underrun Protection 2009
  18. From the Nature of the Problem section of that Australian document, p. 13: When an underrun crash between vehicles occurs, there are two noticeable outcomes. The
    first, as described above, is the trauma from the exposure of the smaller vehicle’s occupants to impacts with the interior compartment of their vehicle, occupant protection measures in the smaller vehicle being unlikely to engage. The second is the likelihood of further collisions arising from the loss of control of the heavy vehicle. This follows from damage to the steering or braking components of the heavy vehicle by the smaller vehicle. 
  19. Oh, look! Remember what the Kenworth Trucks brochure said about that: FUPS also helps to protect against any damage to the truck’s steering, thus enabling the truck driver to stay in control.
  20. Then I noticed the crash test manager mention that very thing in the Volvo Youtube video of FUPS crash testing:

  1. Also, Volvo is the first vehicle manufacturer to fit this type of underrun protection system to buses.
  2. From the Background of that Australian document, p. 11: In terms of traffic safety, issues relating to heavy commercial vehicles have drawn considerable attention from policy makers, road safety engineers and the general public.
    For the purposes of this Regulatory Impact Statement (RIS), a heavy commercial vehicle is defined as a goods carrying vehicle with a Gross Vehicle Mass (GVM) greater than 3.5 tonnes. Heavy commercial vehicles have many unique operating characteristics that have an effect on crash severity, such as high gross mass, long vehicle length and relatively long stopping distances. Aggregate data and previous research has shown that crashes involving trucks colliding with passenger cars, motorcycles, bicycles and pedestrians have an increased likelihood of producing a severe injury or fatality. This increase is in large part due to the incompatibility between vehicles due to geometric and mass differences. The compatibility of a vehicle is a combination of its crashworthiness and its aggressivity when
    involved in crashes with vehicles in the fleet. While crashworthiness focuses on the
    capability of a vehicle to protect its occupants in a collision, aggressivity is measured in terms of the casualties to occupants of the other vehicle involved in the collision.
    Crashworthiness is sometimes referred to as self-protection while aggressivity is sometimes referred to as partner-protection.
    Crash incompatibility is of concern in all vehicle-to-vehicle collisions. Heavy commercial vehicle-to-car collisions are one specific aspect of this problem but another one relates to heavy commercial vehicle-to-vulnerable road user collisions, such as motorcycles, bicycles and non-vehicles (ie pedestrians).
    This RIS addresses a particular type of crash event, which is a subset of heavy commercial vehicle crashes and referred to as a “heavy vehicle underrun crash”. A heavy vehicle underrun crash occurs when a passenger car, motorcycle, bicycle or pedestrian slides underneath the front, side, or rear end of a heavy commercial vehicle. 
  3. The terms aggressivity & partner protection, which I have not seen discussed at length in U.S. literature, reminds me of the 2002 American Trucking Associations/Technology Maintenance Council prediction of underride regulations by 2006 — including, Frontal aggressivity regulations (tractors) (estimated). Imagine! The trucking industry has been well aware of the great need to do something about this preventable cause of death.
  4. From the Summary of that Australian document, p. 6: The objective of the Australian Government is to reduce the cost of underrun trauma. To this end, heavy commercial vehicle Underrun Protection (UP) has been investigated since the 1980s in various countries and is now mandatory in the European Union (EU) for commercial vehicles exceeding a GVM of 3.5 tonnes.
    While the heavy commercial vehicle manufacturer or operator would bear the cost of fitting UP, the principal beneficiaries would be other road users and the community generally (through the reduction in the severity of injuries). Therefore, existing market arrangements are not likely to respond to the problem and government intervention of a non-regulatory or regulatory type may be needed. Eight options, both non-regulatory (Options 1-5) and regulatory (Options 6-8), were investigated.
    The provision of Underrun Protection (UP) by self-regulation (Option 1) could be a low cost option and yet is unlikely to generate the high application rate required for new vehicles if underrun trauma is to reduce significantly. This is due to the competitive nature of the industry and because the costs of the option would be borne in the main by the vehicle manufacturer, and subsequently passed onto the operator and consumer, while a significant portion of the benefits would be received by the wider community. 
  5. Also, from the Abstract document, p. 3: The aim of this Regulation Impact Statement (RIS) is to examine whether there is a need for government intervention, to be directed towards new vehicle construction, in order to reduce the trauma from road crashes involving heavy commercial vehicle underrun. These crashes are often severe, because of the incompatibility in both mass and geometry of heavy vehicles and other road users such as passenger cars, motorcycles, bicycles and pedestrians.
    The need for some type of Underrun Protection (UP) was identified. Costs and benefits were estimated for eight possible non-regulatory and regulatory options to introduce UP.  Although self-regulation is very much on the agenda of the road freight transport industry, it was concluded that the level of competition within the industry and the externality of any benefits achieved would not make this an effective option. 
  6. Energy Absorbing Front Underrun Protection for Trucks: Developing a test procedure By Iain Knight
  7. Photo of an Isuzu FUPS: Our front axles now come with FUPS (Front Under-run Protection System) meaning you can safely carry up to 6.5 tonnes over the front axle.
  8. The front underrun protection prevents smaller vehicles in frontal crashes from being dragged under the body of a large truck. In its function as a high-strength steel abutment, it activates the energy-absorbing areas of the body of the advancing vehicle (crumple zones) so that the energy of the collision can be dissipated. See a photo of an FUP by Kirchoff Automotive (Germany): https://www.kirchhoff-automotive.com/products/commercial-vehicles/front-underrun-protection/ 
  9. The Influence of Recent Legislation for Heavy Vehicles on the Risk of Underrun Collisions: Axel Malczyk, Unfallforschung der Versicherer, Berlin
  10. VOLVO’s motto of safety:

    The Volvo brand is the brand that is most linked to safety. The reason is that since its founding in 1927 one of the most important goals of the company has been to make motor vehicles as safe as possible in traffic.

    Many of the safety solutions in use today were first introduced by Volvo. Thanks to the scale of the combined resources of the Volvo Group and Volvo Car Corporation, the companies can invest heavily in research and development on traffic safety.

    Two years ago, Volvo Buses was the first to launch FIP (Front Impact Protection), a reinforced front that increases protection for the driver and guide in a front-end collision. Currently, there are no EU requirements regarding the amount of energy the front of a bus must withstand. However, there is a standard for trucks and Volvo Buses’ FIP withstands energy amounts that exceed the truck requirement by 50%. VOLVOS COACHES FIRST WITH A FRONT UNDERRUN PROTECTION SYSTEM, 2006

  11. So, why did Volvo publicly state at the Road to Zero Coalition, in March 2018, that they would not put Front Underride Protection on trucks unless the government mandates that they do so?!
  12. Here is the STOP Underrides! Bill text for FUP:   https://www.congress.gov/bill/115th-congress/senate-bill/2219/text“(5) ‘front underride guard’ means a device installed on or near the front of a motor vehicle that limits the distance that a vehicle struck in the rear by the vehicle with the device will slide under the front of the striking vehicle.”;

    “(c) Front Underride Guards.—

    “(1) RULE REQUIRED.—Not later than 2 years after the date of the enactment of this section, the Secretary shall issue a final rule requiring all commercial motor vehicles with a gross vehicle weight rating of more than 10,000 pounds manufactured on or after the effective date of the rule to be equipped with front underride guards.

    “(2) REPORT.—Not later than 1 year after the date of enactment of this section, the Secretary shall—

    “(A) complete research on equipping commercial motor vehicles with a gross weight rating of more than 10,000 pounds with a front underride guard to prevent trucks from overriding the passenger vehicle; and

    “(B) submit to the Committee on Commerce, Science, and Transportation of the Senate and the Committees on Transportation and Infrastructure and Energy and Commerce of the House of Representatives a report on the research described in subparagraph (A).

    “(3) RETROFIT REQUIREMENTS.—Not later than 3 years after the date of the enactment of this section, the Secretary shall issue a rule requiring all commercial motor vehicles with a gross vehicle weight rating of more than 10,000 pounds to be equipped with a front underride guard.

    “(4) COMPLIANCE DATES.—

    “(A) IN GENERAL.—Except as provided in subparagraph (B), compliance with each of the rules issued by the Secretary under paragraphs (1) and (3) shall be required beginning on the date that is 1 year after the respective issuance date of each such rule.

    “(B) PHASE-IN.—The Secretary may permit a phase-in period (not to exceed 3 years) pursuant to paragraph (3) for the installation of front underride guards on commercial motor vehicles.

  13. National Transportation Safety Board (NTSB) Front Underride/Override Crash Investigation and underride safety recommendations. See crash photos here and the report here: NTSB Recommended FRONT OVERRIDE PROTECTION In 2010 after Truck OVERRODE 3 vehicles
  14. NHTSA FARS data on front underride deaths (remember, this is an under-reported problem): https://annaleahmary.com/2016/08/truck-underride-deaths-by-type-from-dot-fatality-analysis-reporting-system-fars-1994-2014/
  15. Really, what NHTSA could do is adopt the UNECE 93, FUPS Standard. Novel idea.
  16. annaleahmary.com posts on FUP: https://annaleahmary.com/2017/10/understanding-underride-v-front-underride/and https://annaleahmary.com/tag/front-underride/

FRONT Underrun Protection Systems (FUPS) Research; So why does Europe require this & US does not?

I have been trying to collect as much information as possible on the deadly dilemma of the truck override which occurs when a truck and car have a head-on collision.

  1. Truck tractor cabs may be equipped with a Front Underrun Protection System (FUPS)
  2. IIHS 2009 TestimonyResearch in Europe has investigated front underride guards, and the United Nations Economic Commission for Europe Regulation 93 requires such guards.  NHTSA also should require adequate front, side, and rear underride guards on new tractors and trailers. Statement before the US House Committee on Energy and Commerce, Subcommittee on Commerce, Trade, and Consumer Protection Emerging vehicle safety issues, May 18, 2009, Stephen Oesch, also contains an Attachment: Federal rulemaking on truck underride guards 
  3. CRASH COMPATIBILITY BETWEEN HEAVY GOODS VEHICLES AND PASSENGER CARS: STRUCTURAL INTERACTION ANALYSIS AND IN-DEPTH ACCIDENT ANALYSIS, Aleksandra KRUSPER & Robert THOMSON , Chalmers University of Technology, Gothenburg, Sweden
  4. FRONT UNDERRUN PROTECTION SYSTEMS FOR TRUCKS. CONSIDERATIONS ABOUT THE BULLET AND TARGET VEHICLES FOR A TEST PROCEDURE, J. Paez, M. Sanchez, Spain
  5. IMPROVED CRASHWORTHY DESIGNS FOR TRUCK UNDERRIDE GUARDS , Byron Bloch & Luis Otto Faber Schmutlzer
  6. Front Underrun or Underride Guards, Underride Network
  7. Volvo Trucks India: Protecting Other Road-Users :The different heights of trucks and cars have always constituted a safety problem in traffic, not least if a head-on collision should occur.Now, we are proud to offer a solution in the shape of Volvo’s Front Underrun Protection System (FUPS), which is fitted as standard on Volvo FH and Volvo FM models.The FUPS prevents passenger cars from becoming wedged under the truck’s front in a frontal collision, and thereby reduces the risk of serious injuries and increases the survival rate for the car’s occupants. The underrun protection beam serves as a 200 mm deep crumple zone, considerably reducing penetration into the car’s passenger compartment. With the truck bumper situated on the same level as that of a typical car bumper, the deformation zone of the car can be utilised in the best possible way.

    The FUPS comes fully integrated into the cab’s structure in the FH and FM series, but does not add any extra weight.

  8. Robustness and Reliability of Front Underrun Protection Systems, Master’s Thesis in Solid and Fluid Mechanics JOHANNES FRAMBY & DAVID LANTZ
  9. Front underrun protective systems and devices are used on heavy vehicles. Their problem of compatibility with other road users is a serious issue. Trucks are stiff, heavy and high and pose a serious threat to occupants of other vehicles in the event of an impact. Frontal car-to-truck collisions are the most common impact type in crashes where trucks are involved. . .  In EU it is mandatory for vehicles over 3.5 tonnes to have a rigid front underrun protection system. Studies have also shown that passenger cars can ‘survive’ a frontal truck collision with a speed of 75 km/h if the truck is equipped with an energy absorbing underrun protective system. In order for a Front Underrun Protective System to be approved laboratory testing has to be carried out in accordance with the procedures described in UN ECE Regulation No. 93. Tests also have to be carried out in by a test facility approved by the road agency (transport department). TEST TO FRONT UNDERRUN PROTECTIVE SYSTEMS
  10. FUPS BullbarsFront Underrun Protection Systems (FUPS) are barriers integrated into the front of trucks OR built as specially designed bullbars and bumpers.The benefits of FUPS are significant:Injuries are minimised by preventing smaller vehicles from going underneath the front of trucks in the event of an accident.
    • FUPS ensure that the crash forces are evenly distributed across the front of the truck.
    • FUPS ensure that the safety features of passenger vehicles (such as air bags and crumple zones) are activated during a collision.
    • FUPS can prevent the car damaging the trucks steering – allowing the truck to be bought to a controlled stop.

    Australian FUPS are made to UNECE Regulation No 93 Standards. The regulation requires that the Front Underrun Protection Device must withstand certain forces, have a smooth front with a face of 100mm to distribute the crash forces, and have a maximum ground clearance of 400mm.

    The fitment of a FUPS is one of the requirements to operate a 26 metre B-Double within Australia. Provided the truck has the cab strength required this may also enable you to have an extra 500kg on the front axle.

  11. Front underrun protection systems for trucks. Considerations about the bullet and target vehicles for a test procedure
  12. Front underrun protection European Commission, Transport, Road SafetyDue to the size and mass of heavy vehicles, the problem of compatibility with other road users is a serious issue. Trucks are stiff, heavy and high and pose a serious threat to occupants of other vehicles in the event of an impact. Frontal car-to-truck collisions are the most common impact type in crashes where trucks are involved.It has been estimated that energy-absorbing front, rear and side under-run protection could reduce deaths in car to lorry impacts by about 12% [100]. An EU requirement was introduced in 2000 based on ECE Regulation 93 requiring mandatory rigid front underrun protection defining a rigid front underrun protection system for trucks with a gross weight over 3.5 tonnes Directive 2000/40/EEC. Studies performed by EEVC WG 14 have shown that passenger cars can ‘survive’ a frontal truck collision with a relative speed of 75 km/h if the truck is equipped with an energy absorbing underrun protection system. Furthermore, these systems could reduce about 1,176 deaths and 23,660 seriously injured car occupants in Europe per year. Research shows that the benefits of a mandatory specification for energy absorbing front underrun protection would exceed the costs, even if the safety effect of these measures was as low as 5% [37]. Energy absorbing systems are available from all truck manufacturers as an optional device but almost none are sold. A test procedure for legislative action is under development VC Compat.
  13. Front underrun protection The front underrun protection prevents smaller vehicles in frontal crashes from being dragged under the body of a large truck. In its function as a high-strength steel abutment, it activates the energy-absorbing areas of the body of the advancing vehicle (crumple zones) so that the energy of the collision can be dissipated.
  14. In head-on collisions of bonnet-type cars (sedans, wagons, hatchbacks, etc., hereafter referred to simply as cars) and heavy trucks, the car often under runs the front of the truck, and the car crew received the serious or fatal injuries. The crash safety performance of the car depends on the way its structural parts interact with the structural parts of the truck. Front Underrun Protection Device equipment that prevents the car from under running the truck is obligatory in India. The Required strength and ground clearance of FUPDs are specified in the relevant regulations used in India. Accidents between cars and trucks are among the most fatal accidents because of the car under running. This phenomenon leads to serious and fatal injuries for car occupants because of intrusion of the car structure into the passenger compartment. This has led to the development of test procedure for energy-absorbing front under run protection systems for trucks. There is a summary of accident analysis of several European countries, where we can read that of the 48000 fatally injured people in road traffic accidents in 1992, 13000 people were killed in accident with trucks involved, about 7000 were car occupants and 4200 of them were killed in car-to-truck frontal collisions.In the same time, in 1994, a collaboration in France between Renault VI (truck manufacturer) and INRETS has begun. The research program set up is based on a experimental design to determine the effect of the vehicle masses, the overlap and the closing speed and the effect of the Front Under run Protection Device on mechanical and biomechanical characteristics. This experimental design is presented which is also analysed and made available to use as a valid Front Under run Protection Device for trucks. Design and Optimization of Front Underrun Protection Device      Dr. T. Ramamohan Rao1 , A. Rama Krishna, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 2 (Jul. – Aug. 2013), PP 19-25 www.iosrjournals.org                                                                                                                                         Conclusions:  Head on collision contribute significant amount of serious accidents which causes driver fatalities. The car safety performances can work effectively by providing FUPD to the heavy trucks. The trucks with UPD can reduce the car driver fatalities by 40 % In India, for Front Under-run Protection Device, IS 14812:2005 regulation is required in for the trucks to meet the safety requirement to protect under running of the passenger car. In above said design, the maximum displacement of FUPD bar is limited to 179mm hence it meet the requirements as per IS 14812:2005. But this needs to be confirmed with physical testing in future. The virtual simulation is tool which can be used to avoid or reduce the physical testing of mechanical systems and components. Overall effect of this is cost saving and same is done with FUPD analysis. As per above results optimized model is safe, more strength and low weight mode suits the best suggested design. Weight reduction achieved by optimization result is 6%, compared to base third Model and displacement is about 5% and Stress is 6%.Finally we conclude that the optimized model results are less than the third design model. By this we can say that optimized front under run protection device is selected. Front under run protection is achieved less weight, less displacement and less stress so that for the passenger who is sitting in the car having high safety by placing this optimized model. We can suggest to automobile industries to keep this type of Front Underrun Protection Device to truck, busses etc which saves the life of passenger with less injury.
  15. Investigating the (length) constraints imposed by the Front Underrun Protection Regulation CONCLUSIONS: Crashes involving an underrun are likely to be severe because a car’s structural strength and passive safety systems – such as crumple zones – are unlikely to confer their full safety benefit. Many trucks/trailers are fitted with some form of underrun protection, however few trucks are equipped to fully minimise the possibility of an underrun. As a passive safety device, underrun protection will not reduce the number of crashes involving trucks and lighter vehicles. However, they can ensure that crashes that do occur are less severe than they might otherwise have been. The economic benefit of this reduction in crash severity substantially exceeds the cost of fitting them to trucks, up to a cost of $1,000 for a package of underrun protection for the front, sides and rear of all trucks (the benefit also exceeds the costs for individual underrun devices). This benefit is accrued over a device lifetime of at least 15 years, and is higher for articulated trucks than for rigid trucks. Further work is needed to develop a minimum standard for underrun protection devices for each side of a truck/trailer combination. 

So. . . tell me again why it is that we do not have Front Underrun Protection on every truck in the United States!?!?!?!?!?!?!

Other posts on front override:

Front Override 008

Best Protection