Rear Underride Prevention

Creating Crash Compatibility:
Rear Guard Standards Rear Guard Weight Rear Guard Retrofit

Rear Guard NRPM 1970 Test Protocol

National Highway Safety Bureau

[49 CFR Part 571]
[Docket No, 1-11; Notice 5]

REAR UNDERRIDE PROTECTION; TRUCKS AND TRAILERS

Notice of Proposed Rule Making

The proposed test requirement has been altered to take into account these objections and surgestions. It is now proposed that the face of the test block be a rectangle 4 inches high and 12 inches wide, and that its height for the test be uniformly set with its lower edge 16 inches from the ground. The vehicle would be required to meet the strength requirement at all points out to the outermost test points on the vehicle. All specific configurational requirements would be eliminated, and the vehicle could meet the strength requirement with whatever components are in position to contact the test block.

The proposed test requirement has been altered to take into account these obfections and suegestions, it is now proposed that the face of the test block be a rectangle 4 inches high and 12 inches wide, and that its height for the test be uniformly set with lts lower edise 16 inches from the ground. The vehicle would be required to meet the strength requirement at all points out to the outermost test points on the vehicle. All specific configurational requirements would be eliminated, and the vehicle could meet the strength requirement with whatever components are in posi-

than ta anontant tha tant htant

Test programs conducted by both the NHSB and concerned industries indicated that the 75,000 -pound test force was unnecessarily large. The proposed requirement has been changed to 50 ,000 pounds in accordance with those findings.

S5. Test procedure.
S5.1 Place the vehicle, loaded to its curb weight, on level ground, restrained to prevent forward, upward or lateral motion. The means used to restrain the vehicle must not inhibit forward movement of the portions tested relative to the rest of the vehicle.

S5.2 Prepare a test block of rigid material with a plane surface in the form of a rectangle 4 inches high and 12 inches wide ("the surface").

S5.3 Position she test block at a point between the outermost positions speciffed in S4.1, so that-
(a) The surface is vertical and facing in the direction of forward travel of the vehicle:
(b) The lower 12 -inch edge of the surface is horizontal and 16 inches from the ground; and
(c) The surface is in contact with the rear of the vehicle.

S5.4 Annly a forward static force of 50,000 pounds to the test block. Maintain the force for 15. seconds. Restrain the block from lateral, vertical, or rotational movement throughout the test.
[F.R. Doc. 70-10663; Filed.Aug. 13, 1970;
8:48 a.m. 1

Rear Guard Performance Standards 1998, 2023

Collision Safety Consulting PlIC

Rear Guard Standards 1970, 1993, 2022

ANPRM 1970	Location	Load (min)	Load (min)	Depth	Depth	Energy (min)	Energy (min)	\sim Force (min)	\sim Avg Force (min)
Rear Underride	(see diagram)	(kn)	(lb)	(mm)	(in)	(kJ)	(ftlb)	(N)	(lb)
	All Points*	220000	50000	381	15	42.4	31250	110000	25000
	To Outer Edge								
FMVSS 223	Location	Load (min)	Load (min)	Depth	Depth	Energy (min)	Energy (min)	Avg Force (min)	Avg Force (min)
	(see diagram)	(kn)	(lb)	(mm)	(in)	(kJ)	(ftlb)	(N)	(lb)
	P1	50.0	11363.6	125.0	4.9	NA	NA		
	P2	50.0	11363.6	125.0	4.9				
	Distributed	350.0	79545.5	125.0	4.9	20.0	14751.2	160000.0	36363.6
Old FMVSS 223	Location	Load (min)	Load (min)	Depth	Depth	Energy (min)	Energy (min)	Avg Force (min)	Avg Force (min)
	(see diagram)	(kn)	(lb)	(mm)	(in)	(kJ)	(ftlb)	(N)	(lb)
	P1	50.0	11363.6	125.0	4.9	NA	NA		
	P2	50.0	11363.6	125.0	4.9	NA	NA		
	P3	100.0	22727.3	125.0	4.9	5.7	4167.2	45200.0	10272.7
IIHS 2018	Location	Load (min)	Load (min)	Depth	Depth	Energy (min)	Energy (min)	Avg Force (min)	Avg Force (min)
Quasi Static	(see diagram)	(kn)	(lb)	(mm)	(in)	(kJ)	(ftlb)	(N)	(lb)
	Outside edge	100.0	22727.3	75.0	3.0	10.0	7375.6	80000.0	18181.8

How Strong is Strong Enough?

35 mph Crash Summary
Force $=$ mass \times acceleration
F_avg = ma_avg $=m(d e l t a-v / d e l t a-t)=m(d v / d t)$
Average crash pulse (time) $=0.150 \mathrm{~s}$ (150) ms
Delta $v=35-0 \mathrm{mph}(51.3 \mathrm{ft} / \mathrm{sec})$
Mass $=3500 \mathrm{lb}$ (108.7 slug) - midsized sedan
Force $(\mathrm{avg}, \mathrm{lb})=\mathrm{ma}=\mathrm{m}($ delta-v/delta-t $)=108.7 \times(51.3 / 0.150)=37,175$
Force peak ~= 37,175/.707 = 52,581 lb FMVSS 223 GUARD @ P1: 11,300 lb

Rear Guard Weight

Collision Safety Consulting PLIC

Elemance Aim 2.2: Modify Guards to minimally comply with FMVSS 223 : Wabash

Wabash	Quasi-Static Response				$\begin{aligned} & \text { Mass } \\ & \text { (kg) } \end{aligned}$
	P1 Force (kN)	P2 Force (kN)	UDL Force (kN)	UDL Energy (kJ)	
Baseline	135.8	125.4	394.7	32.1	54.4
Minimally Compliant					
FMVSS Req.	250	250	2350	≥ 20	N/A

Baseline Weight (lb)

120 lb

$187 \mathrm{lb} / \mathrm{No} \mathrm{PCl}$

153 lb

Collision Safety Consulting PlIC
\checkmark PCI Prevented

- PCI Not Prevented

Guard Model		PCI Dynamic Response			Quasi-Static Response				$\begin{gathered} \text { Mass } \\ \text { (kg) } \end{gathered}$
		FW	50\%	30\%	P1 Force (kN)	P2 Force (kN)	UDL Force (kN)	UDL Energy (kJ)	
$\begin{aligned} & U \\ & \stackrel{\pi}{0} \\ & \sum \sum \end{aligned}$	Baseline	\checkmark	\checkmark	\checkmark	172.5	83.3	356.2	36.8	84.8
	Minimally Compliant	\checkmark	\checkmark	\checkmark	157.1	52.5	351.9	33.3	75.7
	Strengthened-Midsize								
$\begin{aligned} & \text { ᄃ } \\ & \text { N} \\ & \frac{0}{0} \end{aligned}$	Baseline	\checkmark	\checkmark	*	135.8	125.4	394.7	32.1	54.4
	Minimally Compliant	\checkmark	\checkmark	\times	79.6	68.5	350.4	25.6	38.9
	Strengthened- Midsize	\checkmark	\checkmark	\checkmark	295.7	243.8	928.1	68.0	75.8
$\begin{aligned} & \mathbb{N} \\ & \stackrel{1}{0} \\ & \stackrel{1}{\mathbb{N}} \\ & \text { U } \end{aligned}$	Baseline	\checkmark	\checkmark	\times	120.5	149.4	441.7	36.6	69.4
	Minimally Compliant	\checkmark	\checkmark	*	67.2	77.0	350.4	29.4	52.5
	Strengthened- Midsize	\checkmark	\checkmark	\checkmark	192.1	277.3	495.4	42.8	101.1
FMVSS No. 223 Requirement					≥ 50	≥ 50	≥ 350	≥ 20	N/A

35 mph 30\% Overlap Added Weight (Ib)

$-20 \mathrm{lb} / \mathrm{No} \mathrm{PCl}$
$+47 \mathrm{lb} / \mathrm{No} \mathrm{PCl}$
$+70 \mathrm{lb} / \mathrm{No} \mathrm{PCl}$

32 lb Additional / ~13,000 lb Empty Weight $=\mathbf{0 . 2 5 \%}$
+32 lb Average
Collision Safety Consulting PllC

Collision Safety Consulting PlIC

Elemance |Aim 2.5: Re-Test Strengthened Guards in FMVSS 223: Great Dane

Pre 2017
Square $厶^{\prime \prime} \times 0.185^{\prime \prime} \times 95^{\prime \prime}=1520 \mathrm{in} \wedge 2 / 70.56 \mathrm{ft} \wedge 2 / \sim 80 \mathrm{lb}$

2017-Current (Retrofit to 2002 UTM 2007 GD)
Rectangular $4 \times 8^{\prime \prime} \times 95^{\prime \prime}=2280$ in^2 / $15.83 \mathrm{ft} \wedge 2 / \sim 120$ |b (Utility ~700 |b)
Added weight: ~40 lb
Increased horizontal strength: ~4X
Collision Safety Consulting PlIC

RIG Retrofit 39 mph 30\% Overlap Test (2012 Chevy Impala)

Bolt on aluminum RIG Retrofit: ~140 lb total Weld on Steel RIG Reftrofit: 60 lb total

